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1 Introduction 

The University of Wisconsin-Madison IEEE Robot Team is pleased to introduce Singularity to the 19th annual 

Intelligent Ground Vehicle Competition. Singularity was first conceived in 2009 shortly after IGVC to address a 

number of its predecessor’s shortcomings, both at the competition and in other scenarios.  After two years of 

work, the team is proud to submit a robot that is both innovative and practical. The team’s objective for this 

project is to go beyond the challenge of the competition and design a versatile and adaptable platform that is 

useful for other applications as well. 

The UW-Madison IEEE Robot Team is composed primarily of undergraduate students studying engineering and 

computer science. Each sub-team meets several times a week outside of class to work on their projects. All of our 

27 members are volunteers who participate without receiving compensation or course credit. 

2 Innovations 

Singularity is the IEEE Robot Team’s latest robot incarnation, featuring entirely new mechanical and embedded 

platforms. Additionally, the software system has been significantly updated to address shortcomings identified in 

previous years, and to take advantage of the new platforms’ capabilities. 

2.1 Mechanical Innovations 

 The key innovative features of Singularity’s mechanical platform are the omnidirectional drivetrain and vision 

systems.  Omnidirectional movement allows for more efficient driving and obstacle avoidance by adding several 

degrees of freedom that do not exist with conventional differentially driven drivetrain systems.  Also, 

omnidirectional movement makes the robot easier to maneuver from a software standpoint.  To support this new 

maneuverability, the mechanical system provided the robot with omnidirectional vision and laser range 

detection. 

2.2 Electrical Innovations 

Singularity's electrical system features many improvements over that of Paradroid, the team's previous robot.  

Strict safeguards are placed on commands sent to the motors to prevent high-level software from compromising 

the structural integrity of the robot.  The motion control system of the robot is implemented using four team-

designed circuit boards which allow for the independent control of Singularity's drive pods.  One innovation not 

yet seen at the IGVC is the use of four laser range finders (LRFs) in tandem with an omnidirectional camera, which 

give more accurate 360° obstacle and lane detection than global mapping or vision-only approaches. 

2.3 Software Innovations 

This year the software team developed several software innovations that improve the performance and efficiency 

of Singularity.  In development of the omnidirectional vision system, the team created the software necessary for 

converting camera images into 360° ground-plane images.   Also, Singularity uses a novel, new lane detection 

algorithm tailored to IGVC competition requirements, providing significant performance improvements over out-

of-the-box lane detection algorithms.  Another notable software innovation is an improvement in the team’s path 



4 

planning algorithm, which, using inverse kinematics, increases power efficiency and reduces wear and tear on the 

mechanical system.  

3 Design Process 

The development process for Singularity began in September of 2009. The original mechanical and electrical 

designs were completed in spring of 2010, but it was determined that the software could not be sufficiently tested 

on the robot before the 2010 IGVC, since the build process itself would take several months. The robot was built 

starting in the fall of 2010 and continued through the following spring; the electrical and software components 

were built in parallel. The team spent an estimated 10000 hours over a period of 18 months designing and 

building Singularity. 

3.1 Team Structure 

The UW-Madison IEEE Robot Team is a student organization comprised entirely of volunteers. The team consists 

of graduate and undergraduate students from various engineering disciplines and computer science. The team is 

broken up into three sub-teams: mechanical, electrical, and software as shown in Figure 3.1. Each sub-team 

leader is selected based on past involvement and level of experience. All-team meetings are held monthly to 

facilitate communication between the sub-teams and to showcase the progression of the development process. 

Major design decisions are made by a consensus of team members.  

3.2 Project Planning 

The planning process began at the first meeting of the 2009-2010 academic year. The decision to implement an 

omnidirectional drivetrain was immediately favored for its myriad of benefits, and was followed by proposals for 

omnidirectional sensors and convenience features such as a simpler method of replacing batteries. Deadlines 

were shared between team leaders and at all-team meetings. The in-person communication of deadlines made 
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interdependence of different features easy to understand, and allowed the team to adjust its priorities based on 

which tasks would add the most value to the robot given the time remaining until competition. 

3.3 Development 

The mechanical, electrical, and software sub-teams each used their own development processes suited to their 

specific task requirements. The mechanical team, whose work consisted of mostly hardware design, used a 

stricter phase-based development process. Conversely, the software team used agile methodologies to allow for 

easier adaptation to the changing scope of their projects. The electrical team, whose projects involved both 

hardware and software design, used a combination of both development processes. New members – many of 

whom had little to no experience in engineering or software development – explored their talents and interests 

through hands-on training and guided group projects. In the spring, many of our new members took charge of 

their own projects, including the motor control system, and simulation software. 

The mechanical team's development cycle consisted of computer-aided design, prototyping, production, and 

testing phases. SolidWorks, a computer-aided design program widely used in industry, was used to model each 

component in the vehicle. By using SolidWorks, many ideas could be visualized quickly without cost, and 

components could be tested for interference and proper interaction before being built. At times, experts on 

campus were contacted about how to best solve a specific design issue in the most efficient and effective way. 

After designs were completed and tested on a computer, prototypes were built for proof-of-concept testing. If the 

prototypes worked, then the designs were finalized and the parts were manufactured in-house. 

The electrical team followed a similar development process for their hardware design, using computer-aided 

design and prototyping whenever possible. Custom boards were designed using EAGLE and Altium, computer-

aided design printed circuit board layout tools. 

The software team carried out much of its development using pair programming techniques. This reduced the 

amount of debugging needed and resulted in more legible code. Pairs worked on individual components and unit 

tests for the components. When unit tests passed, each pair moved on to testing their component in conjunction 

with other components. The software team also focused on producing working revisions of software whenever 

possible. The use of a modular software framework made this relatively easy, because nonfunctioning 

components could be kept in the root of the versioning repository without being included in a build. 

4 Mechanical Design 

Singularity incorporates many innovative mechanical concepts that make the robot space and power efficient, 

easily upgradeable, and robust in design. The goal of Singularity’s design is to provide an easily testable, easy to 

service platform for embedded and software systems, one which has the capacity to incorporate new and 

challenging control concepts with its fully omnidirectional capabilities. Singularity’s main mechanical features 

are: the omnidirectional drivetrain, chassis, and omnidirectional vision and sensing system. The omnidirectional 

drivetrain consists of four independent ‘drive pods’ which can each be turned and driven independent of one 

another. Singularity’s chassis, in addition to providing sufficient structural integrity, incorporates the bearing 
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system for the drive pods, mounting for embedded components, and the shell which protects the inside of the 

robot. 

4.1 Drivetrain 

The omnidirectional drivetrain has the capability to drive Singularity with 

more degrees of freedom than its predecessor. Each pod is turned by a 24 Volt 

motor which has been geared down twice (externally with a gearing ratio of 

35:11 and internally with a planetary gearbox to a ratio of 53:1) for a 

maximum estimated angular velocity of 35 RPM. Additionally, each pod is 

driven by a 24 Volt, 450 Watt motor that has been geared down internally to a 

maximum of 550 RPM. This was further reduced by a factor of 3:1 from the 

motor to the wheel by chain driven sprockets.  The large gear reduction from 

the high power drive motor will enable a high torque capacity for each wheel. 

The maximum speed of these drive motors far surpasses the 10mph speed 

limit for the competition; however the additional power will enable 

Singularity to drive over the rough terrain and uneven surfaces encountered 

at competition. The maximum speed of the robot is restricted by the motor 

controller boards. 

The pneumatic wheel on each pod is 10” in diameter and is carefully 

pressurized to be soft enough to absorb impact yet hard enough to reduce the 

power needed to rotate the pod. Furthermore, the drivetrain allows for more efficient driving because the speed 

and direction of each wheel can be independently controlled. For every direction in which the robot can drive, 

there exists a speed and direction for each pod such that no 

drag is applied to any of the wheels. 

To reduce the amount of maintenance required throughout 

the vehicle’s lifetime, each pod is supported on a carefully 

constructed bearing system. Shocks directed upwards 

through the pod are absorbed by the surrounding frame, 

consequently reducing stress on the turning mechanism. 

The structural integrity of the design for the drivetrain was 

verified through both hand calculations and actual testing. 

First, the design was analyzed to determine whether it 

could withstand hitting a bump at top speed. Upon 

professional recommendations of several professors 

(credit: Carl Martin, Robert Witt) this was modeled as 

applying the dead load of Singularity’s own weight in 2g 

conditions. Finite element analysis performed on this 

Figure 4.1 One of four drivetrain 
pods attached to Singularity’s 

frame. 

Figure 4.2 ANSYS structural analysis results for the 
base of the drivetrain pod, showing a maximum 

tensile stress of 21530 psi. 
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component using conservative estimates, as illustrated in Figure 4.2, showed the part met at worst 62% of yield, 

confirming the safety and reliability of the design. Additionally, after the first pod was constructed, it was impact 

tested to determine whether it would withstand the force of the entire robot dropped from a height of 6“. 

4.2 Chassis 

Singularity’s chassis was designed to emphasize the robot’s 

omnidirectional capabilities, be structurally robust, and 

provide easy access to electrical and mechanical components. 

The chassis measures 36” long by 32” wide, which allows the 

robot to navigate between obstacles without altering its 

orientation and fit through standard doorways. The robot is 

39” tall when the camera mount is collapsed, allowing the 

robot to fit inside a minivan without disassembly. The camera 

mount adds an additional 16” of height to provide a large 

range of visibility for lane detection. 

The frame needed to be strong enough to withstand complex 

loading from the omnidirectional drivetrain, provide the 

stability necessary to reduce vibrations felt of the sensors and cameras, and be as lightweight as possible. Initially, 

the chassis was designed with a hybrid of high-strength steel and lightweight aluminum to reduce the overall 

weight of the robot without sacrificing structural integrity. However, the tight corners and complex geometry of 

the frame posed major challenges for the welded aluminum portion of the structure. For example, it was 

determined that the aluminum battery compartment design would not be able to withstand the force of 100-lbs of 

batteries being loaded and unloaded. In order to meet the desired structural integrity requirements, the majority 

of the frame was redesigned with steel square-tube. This had the additional benefit of allowing the frame to be 

welded using the Metal Inert Gas (MIG) process, which is faster than the Tungsten Inert Gas (TIG) process used to 

weld aluminum.  

In order for the embedded and software teams to have enough time to test before competition, Singularity’s 

chassis was streamlined. The simplified geometry reduced the pressure on the welders and allowed for a rapid 

turnover of the robot to the team members in charge of configuring the electrical components. Additionally, the 

current chassis uses less material than the old design, leading to a cleaner look and leaving space for future 

modifications and improvements.  

4.3 Serviceability 

Singularity was designed to provide easy access to its internal components for maintenance and upgrades. The 

batteries and two of the laser range finders are attached to a pull-out tray.  This allowed the size of the battery 

compartment to be reduced compared to its predecessor while speeding up the process of replacing the batteries. 

Similarly, all of Singularity’s circuit boards are attached to easily-accessible panels mounted underneath 

Figure 4.4 Singularity’s original hybrid 
aluminum-steel frame design. 
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Singularity’s outer shell. The catadioptric assembly on the top of the robot can be removed and stored in the 

payload area, which allows Singularity to fit in the back of a mini-van for long-distance transportation. 

4.4 Sensor Placement 

Singularity implements an omnidirectional optical system for lane detection. A single camera is mounted facing 

directly upwards and pointed at the tip of a 6” diameter convex axicon (cone-shaped) mirror with an angle of 

depression of 18°. The shape, size, and position of the mirror were chosen to increase the proportion of pixels 

that map to the surrounding several feet of the robot as compared to a spherical or parabolic mirror. The cone 

shape also allowed the mirror to be easily and inexpensively manufactured: the cone was machined out of 

aluminum to match the specifications required to achieve the desired field of view, then coated with a sheet of 

metallic DuraLar for reflectivity. Since the camera mount is centered on the top of the robot, the view of the 

ground immediately surrounding the robot is obscured. However, since lines are visible on all sides of the robot, 

lines that pass through the obscured area can be interpolated from lines detected in the surrounding areas. 

In addition to the omnidirectional vision, there is an LRF mounted on each side of Singularity. These serve to 

detect obstacles through 180° ranges, which were placed to minimize blind spots. Also, due to interference, it was 

necessary to position the LRFs in a way such that all the scans they would make are vertically offset from each 

other by 20 cm. The compass, accelerometer, and GPS are located as close to the center of the robot as possible to 

ensure accurate measurements, and the compass is also placed away from the motors and steel frame to reduce 

distortion of the magnetic field.  

5 Electronics Design 

Singularity’s electrical system is designed to provide a simple, robust interface between the high-level software 

system, sensors, and effectors in order to  deliver efficiency, functionality, and safety.  In addition to handling all 

of the low-level sensor interfacing, the electrical system provides power to all system components. 

Remote

System Controller

Camera Accelerometer

Computer

GPS

Router

EncodersCompass

E-Stop

Motor Control

LRFs

Motors

Figure 5.1 Embedded system diagram. Red-outlined components indicated the embedded 
system. 
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5.1 Embedded Control System 

At the center of the embedded control system is a TS-7800 ARM-based single-board computer (SBC). This runs a 

customized Gentoo Linux distribution.  This system provides the simple interface between the main computer 

and the rest of the electrical system.  It communicates with the main computer via Gigabit Ethernet connection, 

enabling simple, reliable high-speed data transfer. 

5.2 Main Computer 

Singularity uses a custom-built micro-ATX computer as its main computational platform. It provides substantially 

more processing power than an equivalently priced laptop and is tightly integrated with the rest of the robot, 

which reduces the risk of damage to the computer and peripherals during operation in tough environments. The 

computer is outfitted with a 2.5GHz Intel Core 2 Quad Processor, 4GB DDR2 RAM, and 4GB of solid-state 

permanent storage. A 23W passively cooled nVidia Quadro graphics card is also installed for parallel data 

processing (GPGPU). This allows Singularity to quickly analyze sensor data and react to changes in its 

environment.  

5.3 Sensors 

Singularity uses an AVT Guppy F-080C digital camera for lane detection.  This camera provides   1024x768 pixel, 

color images at 30 FPS via a Firewire 400 connection.  It receives power via this connection as well.  Singularity 

also has four SICK PLS101 laser range finders, providing a complete 360 degree plane of view around the robot.  

Other sensors include an Ocean Server Technology OS4000-T digital compass with built-in accelerometer, a 

Garmin GPS 18X-5Hz GPS receiver with one meter accuracy, a second accelerometer to provide accurate 

rotational data, and quadrature and absolute drive pod encoders. 

5.4 Motion Control 

Singularity’s drive system implements a brand new method of motion control.  Four team-designed motor 

controllers drive eight motors (four steering, four drive) on Singularity completely independently.  Each motor 

controller commands a single drive pod, and receives feedback from quadrature encoders, absolute encoders, and 

potentiometers mounted on the drive pods.  This control scheme allows Singularity to accurately drive on uneven 

terrain.  The motors can be given commands to simulate several common driving modes, such as Ackermann 

steering, differential drive, and synchro drive. 

5.5 Remote Control 

Singularity uses a Linksys WRT320N wireless router to enable remote connectivity between the internal systems 

and the outside world.  Using this router, Singularity can communicate with any device capable of connecting to 

an 802.11g (Wi-Fi) network.  The wireless system is used to provide shell access to the main and embedded 

systems.  Additionally, this allows the robot to be controlled remotely via the team’s custom-designed, JAUS-

based user interface. 
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 A team-designed, hand-held Operator Control Unit (OCU) allows for manual control of the robot.  The OCU 

communicates with the robot using a pair of 900MHz ZigBee modules, which offer excellent reliability and 

performance.  The system supports automatic channel hopping, power modulation, and 128-bit AES encryption of 

the wireless transmissions.  Also, the modules have a maximum line-of-sight range of up to six miles, which is far 

greater than any reasonable usage of the robot. 

5.6 Electrical Safety Features 

The wireless emergency stop system is integrated directly into Singularity’s OCU.  The system uses a side channel 

from the ZigBee link to completely bypass the embedded software system when sending  emergency stop 

commands.  This dedicated data line is more reliable than sending an emergency stop packet from the remote, as 

all software on both sides of the ZigBee link is bypassed. The emergency stop is also triggered when the ZigBee 

link is broken.  The emergency stop cuts power to the drive motor circuitry, bringing Singularity to a halt in less 

than one foot of travel. 

Singularity also includes a warning light and an optional 110dB air horn to provide visual and auditory warnings 

during operation. The embedded team decided to expand upon the basic safety features required in the LED 

warning system: besides switching to a flashing pattern while in autonomous mode, the LED lights around 

Singularity will also repeat a cascading pattern to indicate the direction the robot is traveling  All of the electrical 

systems on Singularity are protected by fuses in order to prevent the failure of one component from affecting 

other components.  In addition, the power converters incorporate over- and under-voltage protection, as well as 

short-circuit and electrostatic discharge protection, making the power system robust under a wide variety of 

difficult conditions. 

5.7 Power System 

Table 5.1 Power System Requirements 

   Normal Maximum 

Device Volts Amps Watts Amps Watts 
TS-7800 Single Board Computer 5 0.4 2 0.8 4 
Warning Lights  3.3 0.6 1.98 1.2 3.96 
Misc Electronics 5 0.5 2.5 1 5 
Linksys WRT54G Router 12 0.4 4.8 0.4 4.8 
Garmin GPS 18x-5Hz 5 0.05 0.25 0.1 0.5 
Guppy F-080 Firewire Camera 12 0.2 2.4 0.2 2.4 
Main Processor DC-DC supply 24 3 72 4.5 108 
Sick PLS101 LRF (4) 24 0.8 19.2 1 24 
Turning Motors (4) 24 2.75 66 24 576 
Scooter Motors (4) 24 20 480 85 2040 

Total Watts     651.13   2768.66 

Singularity’s power system is designed to maximize vehicle run time and make software development and testing 

as easy as possible. Power is derived from two 12V deep-cycle lead acid marine batteries that form a 24V nominal 

battery pack with 75AH capacity. This battery system provides power for up to three hours of operation under 

normal conditions and up to ten hours in standby mode. The long battery life and integrated charging port allow 
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Singularity to run nearly continuously. In addition, depleted batteries can be replaced in minutes to maximize run 

time in the field. 

Power conversion using team-built DC-DC converters provides 24V, 12V, 5V, and 3.3V power to the various 

systems on the robot at 85-95% efficiency. A separate LRF power supply allows all four LRFs to be powered from 

a single circuit board. Efficiency is approximately 93% when each LRF draws 1A.  One distinctive feature added to 

this power supply is a combination of both a hardware push button reset and a software reset, which allows the 

LRF’s to be power cycled manually or from software in the unfortunate event of a failure while in autonomous 

mode. 

6 Software Design 

Singularity’s software system is an evolved version of the Robotics Simulation and Control Lab (RSCL). RSCL is a 

JAVA framework originally developed by the team in 2005.  It was designed with the principles of simplicity, 

modularity, and robustness in mind.  The team sought to continue this tradition because the design aspects 

closely aligned with the goals of our team: providing a training platform for inexperienced members that also 

meets IGVC performance requirements.  The RSCL platform is easily accessible to undergraduates because it was 

originally designed by fellow undergraduates, and  because it is written in JAVA, UW-Madison’s primary 

instructional programming language.  Finally, RSCL was chosen because it has proven to be a versatile and robust 

platform at past IGVC competitions.  

A marked deviation in our objectives from last year is an emphasis on a more reactionary approach compared to 

last year’s heavy mapping and path planning approach.  This was done to reduce software complexity and 

increase robustness.  Through careful deliberation, and through experience from last year’s attempts, it was 

determined that the additional complexity brought on by a simultaneous localization and mapping (SLAM) 

system was not adequately justified by the requirements of the competition. It was deemed that all objectives 

could be completed with the less complex system.   

6.1 Structure 

Singularity’s software architecture is comprised of 3 distinct layers: the sensor/effector daemon layer, the 

observable layer, and the observer layer.  The sensor/effector daemon layer is comprised of servers which 

interface directly with the sensors/effectors and transmit received data or commands to or from a software client 

via TCP/IP sockets.  Implementing the sensor interfaces in this way increases modularity and the scalability of  

the system for future projects.  This year we incorporated an open source software package called daemontools 

which monitors all of our daemons and immediately restarts them in the event that they encounter a catastrophic 

failure.  This has greatly improved the robustness of our robot, increasing testing hours and providing insurance 

should something fail in the middle of a live run.   

Our second layer, the observable layer, consists of asynchronous clients that run as part of RSCL, each running in 

its own thread.  They connect to the aforementioned servers and provide data asynchronously to upper-level 

layers using an event-based subscriber model.  We chose this implementation to provide greater modularity by 
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freeing higher layers from the burden of implementing and being tied to specific server connections.  The 

asynchronous event model ensures that higher layers always have access to the most recent data, ensuring the 

highest possible temporal accuracy of our models.  These clients are implemented using a singleton programming 

paradigm to reduce the presence of redundant network traffic travelling to higher layers.   

The third layer, the observer layer, consists of high-level data modules such as maps, goals, path planners, pose 

estimators, and operating modes.  The high level of abstraction in these modules allows them to be easily ported 

to different robots with minimal modification.   

6.2 Obstacle & Lane Detection 

The main sensors used for obstacle and lane detection are the four laser range finders (LRFs) and camera.  Raw 

data received from the LRFs and camera are synthesized into a set of objects (obstacles and lanes) and are 

overlaid onto a local object map. This object map is then processed into a set of drivable regions surrounding the 

robot.   This approach remains robust in the face of faulty data because it throws out all map data after a single 

iteration of the process.  Only a small set of hints are maintained in order to inform the next iteration of likely 

object locations.  

Our camera is used primarily for Lane Detection, though it also serves as our primary flag and pothole detection 

sensor.  In developing the vision system it was necessary to balance the field of view the camera provides with the 

need to maintain sufficient image resolution for our vision algorithms to run effectively.  It was determined 

through a set of calculations and experimental results that a maximum field of view ranging from 9 to 20 feet in a 

single direction would produce the best results.  Given the maximum speed of the robot and speed of our 

algorithms and sensors, it was determined that a maximum sensor range of nine feet would be sufficient to 

properly navigate the robot through any potential situation.  The LRF ranges are limited to 12 feet from a 

maximum range of 150 feet for this same reason.  

6.2.1 Vision Processing 

Singularity uses a catadioptric vision system with a cone-

shaped mirror configuration in order to provide a 360-

degree camera field of view.  A cone mirror was selected 

because it provides all-encompassing visibility, which 

allows Singularity to maneuver in its environment without 

exiting the lanes. Additionally, they create an opportunity to 

perform omnidirectional stereo vision, which the team is 

considering implementing in the future. First, images taken 

from the camera off of the cone mirror are processed to 

detect points indicating lanes.  Then, these points are un-

warped using an algorithm that maps points in the image-

space onto the ground-plane.  Experimental results showed 

Figure 6.2 Intensity values from a row of the input 
image. 

Figure 6.2 The same row after the edge filter has 
been applied. The green arrow indicates the 

detected line segment. 
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that running the algorithms in this order provided the best performance in terms of both efficiency and lane 

detection accuracy.      

The lane detection algorithm first applies a noise-invariant, high-contrast filter to the input image, detecting 

paired high contrast edges.  This filter works by calculating the difference between the averages of either side of 

each pixel.  Then, corresponding adjacent high and low relative extrema, beyond a specific threshold, are selected 

as segments, rows of pixels bounded by high contrast edges. Segments are clustered into groups based on 

proximity; then, a shape analysis algorithm selects the groups that most closely approximate lines.  Finally, curves 

are fitted to the selected groups of segments.  These curves are then un-warped to ground-space coordinates 

using the unwarping scheme mentioned above and transmitted to the next layer.  

This customized lane detection algorithm provides several benefits over more conventional lane detection 

algorithms. All filters applied to the images are separable, which reduces the runtime complexity of the 

processing from O(n2) to O(n).  In practice, our image processing algorithm can process a 1024x768 image in less 

than 30ms. This speed allows for more precise and temporally accurate data for implementing path planning 

algorithms. It is also tailored to deal with the high degree of noise detected in images of grass.  Finally, the 

algorithm runs using image intensity values, as opposed to specific color channels.  This makes the algorithm 

generalizable to a wide variety of applications such as object detection.     

Once the detected curves reach the higher layer, they are further filtered based on their direction, size, position, 

and jaggedness.  Additionally, they are compared with predictive transforms of the previous scan’s curves in 

order to rule out false positives.   

6.3 Autonomous Navigation 

Singularity implements a hierarchical subsumption 

architecture for mapping and path planning.  First a long 

term goal is calculated using the robot’s previous path, 

lane direction, and waypoints.  This long term goal, in 

conjunction with an obstacle map of nearest obstacles, is 

then used to find the direction closest to the long term 

goal that avoids obstacles.  Finally, a set of commands is 

determined using inverse kinematics to get us as close to 

our midterm goal as possible. 

The lane manager determines Singularity’s long term 

goal by projecting out the center and direction of the 

detected lane.  This is done in a robust manner by 

weighting how much vision-detected lines contribute to 

the calculation of the lane geometry based on how much 

they correlate with the robot’s previous path (a good 
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indicator of the actual lane).  The long term goal alleviates the problem of following dashed lines because the goal 

is extrapolated from previous lanes and partial lane geometry.  This is a marked improvement over previous 

years’ algorithms which extrapolated lines as obstacles, creating problematic situations in the case of false 

positives. 

The midterm goal is determined in accordance with input from the lane manager, replacing the lane manager’s 

goal if it is not directly achievable.  This is accomplished by gathering the closest objects in each direction into an 

array.  This array is processed into a set of drivable gaps.  The final midterm goal is chosen as the angle within the 

drivable gaps that is sufficiently distant from obstacles and most in the direction of the long term goal.  Driving 

toward this midterm goal achieves obstacle avoidance (making complex obstacles such as center islands trivial to 

surpass) while still leading us in the direction of the chosen goal.  One additional measure is taken: placing an 

obstacle on the map at the robot’s previous position. This has the effect of propelling the robot forward in the 

case of switchbacks.  If no valid gaps are detected, this obstacle is removed, and the midterm goal is recalculated, 

allowing the robot to escape dead ends and traps.    

The short term goal provides a motor command that moves the robot as close to the midterm goal as possible.  A 

table is generated mapping motor commands to predicted positions.  The considered motor commands are within 

a certain nucleus of the current motor command, simultaneously limiting the robot’s acceleration and the size of 

the calculated table.  A fixed time interval, several times larger than the robot’s reaction rate is used for position 

prediction.  Thus the robots path is defined as the single motor command executed over the fixed time interval.  

This provides the robot with a steady, consistent path to the midterm goal, yet still allows the robot to quickly 

modify its path should its midterm goal change.   

This path has several enticing properties.  The implicit acceleration limit and preference for constant velocity 

reduces strain on the mechanical platform by avoiding rapid changes in speed.  This path naturally reduces any 

tendency to turn in place, reducing both wear on the driving system and excessive power consumption.  Finally, 

the consistent path coupled with a high reaction rate makes this algorithm ideal when the robot is operating at 

high speeds.  Furthermore speeds are naturally throttled in the presence of close obstacles. 

6.4 Navigation Strategy 

The modularity of the software system makes the implementation of the navigation challenge code simple.  The 

long term goal determined by the lane manager is simply replaced with the specific destination GPS waypoint.  A 

simple greedy algorithm determines the waypoint traversal order.  Though a Differential GPS system was outside 

the scope of the team’s budget, an extended Kalman filter is used, combining GPS, encoder, and IMU data to 

provide us with accurate localization up to 10 cm.   

This year the team developed a global obstacle map implemented using a range tree data structure.  Obstacles are 

placed onto the robot’s local map on every path planning cycle by making a query to the range tree.   These 

obstacles are placed to tailor the robot’s path and set up restricted driving areas.     This will be used to force the 

robot to look at certain positions for a break in the fence separating the Valley and the Mesa.  
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6.5 Simulation 

In order to facilitate testing of the software without using the physical robot, a simulation component was 

designed. It is composed of two parts, SimulateC (SimC) and SimulateD (SimD), as well as a GUI for each to 

simplify their usage. Modularity allows the simulator to be transparently inserted between the second and third 

layers of the system.   SimC records raw data from the sensors on the robot, and SimD plays this data back into the 

software algorithms.  This allows the team to test new algorithms more quickly and efficiently, checking their 

responses to previously encountered situations.   

6.6 JAUS Integration 

A single, light-weight framework was developed as the base of our JAUS compliance code.  Our framework acts as 

a central kernel for our client-side and server-side JAUS implementation.  This framework provides all message 

encoding, decoding, sending, and receiving functionality.  All seven core services of the JAUS specification have 

been implemented, and six of the mobility services have been implemented as well.  Building off of this 

framework, we have fully integrated our robot to be JAUS compliant, developed a graphical user interface that 

controls the robot entirely through JAUS messages, and developed a similar Android application that is capable of 

controlling the robot.    

7 Performance 

Singularity’s rugged construction and powerful motors 

allow it to navigate over a variety of terrains at up to 

10mph and climb steep slopes, while the 

omnidirectional drivetrain provides efficient 

maneuverability. The omnidirectional camera and LRFs 

detect obstacles several meters away which the powerful on-board computer can quickly react to using robust 

localization and mapping algorithms. Two large deep cycle lead-acid batteries provide ample run time for testing 

and should last all day under intermittent use. 

 

8 Cost Summary 

Ideally, the team would design and manufacture all components on the robot for the experience it would provide.  

However, several components are too expensive to make in small quantities, require access to specialized 

equipment, or are simply beyond the level of undergraduate work.  These components, such as motherboards, 

motors, the GPS, and others, were purchased, saving both time and money.  The team designed and manufactured 

a vast majority of the components on Singularity including the frame, power supplies, operator control unit, and 

motor controllers.  Most of the software is written entirely by team members.  In many cases, code originates 

from various open source projects and is updated or improved upon. 

Performance Parameter Prediction Result 

Top Speed 10mph - 

Ramp Climbing 30° - 

Reaction Time 200ms 85ms 

Battery Life 3 hours - 

Obstacle Detection Distance 14 feet 12 feet 

GPS Waypoint Accuracy 1.0m 1.0m 

Table 7.1 Performance characteristics 
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Table 8.1 Estimated parts cost for Singularity 

System Item Qty Cost Our Cost 

Mechanical Structural Components - $783 $783 

  Drive Components (Sprockets, Chain, etc.) - $252 $252 

  Bearings - $238 $238 

  Hardware - $111 $111 

  Non-Structural Components (PVC, Shaft Collars, etc.) - $91 $91 

  Motors 8 $703 $703 

Computer Main Board - Foxconn G33M-S Micro-ATX 1 $95 $0 

  Processor - Intel Q9300 Quad Core 1 $280 $0 

  Graphics Card - Quadro NVS 290 1 $120 $0 

  Solid State Memory - 4GB 1 $65 $0 

  Memory - 4GB DDR2 800 1 $61 $0 

Vehicle Control TS-7800 Single Board Computer 1 $270 $270 

  Interface Board – Team Designed 1 $150 $150 

  Motor Controllers – Team Designed 4 $600 $300 

  Wireless Router – Linksys WRT320N 1 $60 $60 

  Operator Control Unit – Team Designed 1 $300 $0 

  Warning Lights – Team Designed 1 $80 $80 

  Wire and Interface Hardware - $120 $120 

Sensors SICK PLS101 Laser Range Finder 4 $12,000 $300 

  Garmin GPS 18x-5Hz 1 $160 $160 

  OS4000-T Compass 1 $250 $250 

  Accelerometer 1 $80 $0 

  Drive Encoders 4 $200 $0 

  Turn Encoders and Potentiometers 4 $100 $100 

Power Main Power Supply 1 $90 $90 

  LRF Supply 1 $80 $80 

  ATX Power Supply – M4-ATX 250W 1 $100 $0 

  Batteries – 75Ah 12V Deep Cycle Lead-Acid 2 $120 $0 

Total     $17,559 $4,138 

 

9 Conclusion 

Singularity was designed with military and commercial applications in mind, and with the hope of advancing the 

field of unmanned ground vehicles.  It was designed to meet and exceed the challenges presented by the 2011 

Intelligent Ground Vehicle Competition, and to highlight the strengths of the IEEE Robot Team.  Singularity’s 

modularity, versatility and efficiency should prove to be an ideal platform for autonomous vehicle research and 

development. 
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