

Presented by the IEEE Robot Team
University of Wisconsin-Madison

Faculty Advisor Statement

I certify that the engineering design of the robotic vehicle described in this report, Singularity, has been

significant and equivalent to what might be awarded credit in a senior design course.

__

Professor Michael Zinn

Department of Mechanical Engineering

2

Table of Contents
1 Introduction .. 3

2 Innovations .. 3

2.1 Mechanical Innovations ... 3

2.2 Electrical Innovations ... 3

2.3 Software Innovations .. 3

3 Design Process ... 4

3.1 Team Structure .. 4

3.2 Project Planning .. 4

3.3 Development ... 5

4 Mechanical Design .. 5

4.1 Drivetrain ... 6

4.2 Chassis ... 7

4.3 Serviceability .. 7

4.4 Sensor Placement .. 8

5 Electronics Design .. 8

5.1 Embedded Control System ... 9

5.2 Main Computer .. 9

5.3 Sensors .. 9

5.4 Motion Control ... 9

5.5 Remote Control .. 9

5.6 Electrical Safety Features ... 10

5.7 Power System .. 10

6 Software Design ... 11

6.1 Structure .. 11

6.2 Obstacle & Lane Detection ... 12

6.2.1 Vision Processing .. 12

6.3 Autonomous Navigation ... 13

6.4 Navigation Strategy ... 14

6.5 Simulation ... 15

6.6 JAUS Integration ... 15

7 Performance... 15

8 Cost Summary ... 15

9 Conclusion .. 16

3

1 Introduction

The University of Wisconsin-Madison IEEE Robot Team is pleased to introduce Singularity to the 19th annual

Intelligent Ground Vehicle Competition. Singularity was first conceived in 2009 shortly after IGVC to address a

number of its predecessor’s shortcomings, both at the competition and in other scenarios. After two years of

work, the team is proud to submit a robot that is both innovative and practical. The team’s objective for this

project is to go beyond the challenge of the competition and design a versatile and adaptable platform that is

useful for other applications as well.

The UW-Madison IEEE Robot Team is composed primarily of undergraduate students studying engineering and

computer science. Each sub-team meets several times a week outside of class to work on their projects. All of our

27 members are volunteers who participate without receiving compensation or course credit.

2 Innovations

Singularity is the IEEE Robot Team’s latest robot incarnation, featuring entirely new mechanical and embedded

platforms. Additionally, the software system has been significantly updated to address shortcomings identified in

previous years, and to take advantage of the new platforms’ capabilities.

2.1 Mechanical Innovations

 The key innovative features of Singularity’s mechanical platform are the omnidirectional drivetrain and vision

systems. Omnidirectional movement allows for more efficient driving and obstacle avoidance by adding several

degrees of freedom that do not exist with conventional differentially driven drivetrain systems. Also,

omnidirectional movement makes the robot easier to maneuver from a software standpoint. To support this new

maneuverability, the mechanical system provided the robot with omnidirectional vision and laser range

detection.

2.2 Electrical Innovations

Singularity's electrical system features many improvements over that of Paradroid, the team's previous robot.

Strict safeguards are placed on commands sent to the motors to prevent high-level software from compromising

the structural integrity of the robot. The motion control system of the robot is implemented using four team-

designed circuit boards which allow for the independent control of Singularity's drive pods. One innovation not

yet seen at the IGVC is the use of four laser range finders (LRFs) in tandem with an omnidirectional camera, which

give more accurate 360° obstacle and lane detection than global mapping or vision-only approaches.

2.3 Software Innovations

This year the software team developed several software innovations that improve the performance and efficiency

of Singularity. In development of the omnidirectional vision system, the team created the software necessary for

converting camera images into 360° ground-plane images. Also, Singularity uses a novel, new lane detection

algorithm tailored to IGVC competition requirements, providing significant performance improvements over out-

of-the-box lane detection algorithms. Another notable software innovation is an improvement in the team’s path

4

planning algorithm, which, using inverse kinematics, increases power efficiency and reduces wear and tear on the

mechanical system.

3 Design Process

The development process for Singularity began in September of 2009. The original mechanical and electrical

designs were completed in spring of 2010, but it was determined that the software could not be sufficiently tested

on the robot before the 2010 IGVC, since the build process itself would take several months. The robot was built

starting in the fall of 2010 and continued through the following spring; the electrical and software components

were built in parallel. The team spent an estimated 10000 hours over a period of 18 months designing and

building Singularity.

3.1 Team Structure

The UW-Madison IEEE Robot Team is a student organization comprised entirely of volunteers. The team consists

of graduate and undergraduate students from various engineering disciplines and computer science. The team is

broken up into three sub-teams: mechanical, electrical, and software as shown in Figure 3.1. Each sub-team

leader is selected based on past involvement and level of experience. All-team meetings are held monthly to

facilitate communication between the sub-teams and to showcase the progression of the development process.

Major design decisions are made by a consensus of team members.

3.2 Project Planning

The planning process began at the first meeting of the 2009-2010 academic year. The decision to implement an

omnidirectional drivetrain was immediately favored for its myriad of benefits, and was followed by proposals for

omnidirectional sensors and convenience features such as a simpler method of replacing batteries. Deadlines

were shared between team leaders and at all-team meetings. The in-person communication of deadlines made

Team Co-Leader

Wes Miller ‘12, CS, FRENCH

Team Co-Leader

Patrick Blesi ‘11, CS, MATH

Software Leader

Patrick Blesi ‘11, CS, MATH

Localization

Alex Durgin ’14, CS

Lance Hartung GRAD, CS

Vision

David Delventhal ‘13, CS

Sam Roth ‘12, CMPE

Motion Control

Eric Kulcyk ‘13, CS

User Interface

Liu Chengyu ‘13, STAT

Simulation

Alex Miller ‘13, CS

Ben Moench ’14, CS

Electrical Leaders

Christopher Cline ‘13, EE

Ross Aiken ’13, CE

Board Design

Josh Petit ‘13, EE

Brian Kilberg ‘14, EE

Power Electronics

Steve Hanson ‘11, EE

Joe Schultz ‘12, EE

Embedded Software

Ziliang Gho GRAD, CE

Mechanical Leader
Dan Mueller ‘12, EMA, PHYS

Drivetrain
Andrew Cattell ‘13, ME

Nick Dimick GRAD, ME, ECE
Spencer O’Rourke ’13, ME, MATH

Chassis
Grant Allen ‘12, ME, CS
Noah Fang ‘14, ENGR

Jake Kilbane ’12, ME, CS
Matt Roake ’11, ME

3-D Modeling
Nick Rolling ‘11, ME

James Vanderheiden ‘13, ME

Figure 3.1 Team organization diagram.

5

interdependence of different features easy to understand, and allowed the team to adjust its priorities based on

which tasks would add the most value to the robot given the time remaining until competition.

3.3 Development

The mechanical, electrical, and software sub-teams each used their own development processes suited to their

specific task requirements. The mechanical team, whose work consisted of mostly hardware design, used a

stricter phase-based development process. Conversely, the software team used agile methodologies to allow for

easier adaptation to the changing scope of their projects. The electrical team, whose projects involved both

hardware and software design, used a combination of both development processes. New members – many of

whom had little to no experience in engineering or software development – explored their talents and interests

through hands-on training and guided group projects. In the spring, many of our new members took charge of

their own projects, including the motor control system, and simulation software.

The mechanical team's development cycle consisted of computer-aided design, prototyping, production, and

testing phases. SolidWorks, a computer-aided design program widely used in industry, was used to model each

component in the vehicle. By using SolidWorks, many ideas could be visualized quickly without cost, and

components could be tested for interference and proper interaction before being built. At times, experts on

campus were contacted about how to best solve a specific design issue in the most efficient and effective way.

After designs were completed and tested on a computer, prototypes were built for proof-of-concept testing. If the

prototypes worked, then the designs were finalized and the parts were manufactured in-house.

The electrical team followed a similar development process for their hardware design, using computer-aided

design and prototyping whenever possible. Custom boards were designed using EAGLE and Altium, computer-

aided design printed circuit board layout tools.

The software team carried out much of its development using pair programming techniques. This reduced the

amount of debugging needed and resulted in more legible code. Pairs worked on individual components and unit

tests for the components. When unit tests passed, each pair moved on to testing their component in conjunction

with other components. The software team also focused on producing working revisions of software whenever

possible. The use of a modular software framework made this relatively easy, because nonfunctioning

components could be kept in the root of the versioning repository without being included in a build.

4 Mechanical Design

Singularity incorporates many innovative mechanical concepts that make the robot space and power efficient,

easily upgradeable, and robust in design. The goal of Singularity’s design is to provide an easily testable, easy to

service platform for embedded and software systems, one which has the capacity to incorporate new and

challenging control concepts with its fully omnidirectional capabilities. Singularity’s main mechanical features

are: the omnidirectional drivetrain, chassis, and omnidirectional vision and sensing system. The omnidirectional

drivetrain consists of four independent ‘drive pods’ which can each be turned and driven independent of one

another. Singularity’s chassis, in addition to providing sufficient structural integrity, incorporates the bearing

6

system for the drive pods, mounting for embedded components, and the shell which protects the inside of the

robot.

4.1 Drivetrain

The omnidirectional drivetrain has the capability to drive Singularity with

more degrees of freedom than its predecessor. Each pod is turned by a 24 Volt

motor which has been geared down twice (externally with a gearing ratio of

35:11 and internally with a planetary gearbox to a ratio of 53:1) for a

maximum estimated angular velocity of 35 RPM. Additionally, each pod is

driven by a 24 Volt, 450 Watt motor that has been geared down internally to a

maximum of 550 RPM. This was further reduced by a factor of 3:1 from the

motor to the wheel by chain driven sprockets. The large gear reduction from

the high power drive motor will enable a high torque capacity for each wheel.

The maximum speed of these drive motors far surpasses the 10mph speed

limit for the competition; however the additional power will enable

Singularity to drive over the rough terrain and uneven surfaces encountered

at competition. The maximum speed of the robot is restricted by the motor

controller boards.

The pneumatic wheel on each pod is 10” in diameter and is carefully

pressurized to be soft enough to absorb impact yet hard enough to reduce the

power needed to rotate the pod. Furthermore, the drivetrain allows for more efficient driving because the speed

and direction of each wheel can be independently controlled. For every direction in which the robot can drive,

there exists a speed and direction for each pod such that no

drag is applied to any of the wheels.

To reduce the amount of maintenance required throughout

the vehicle’s lifetime, each pod is supported on a carefully

constructed bearing system. Shocks directed upwards

through the pod are absorbed by the surrounding frame,

consequently reducing stress on the turning mechanism.

The structural integrity of the design for the drivetrain was

verified through both hand calculations and actual testing.

First, the design was analyzed to determine whether it

could withstand hitting a bump at top speed. Upon

professional recommendations of several professors

(credit: Carl Martin, Robert Witt) this was modeled as

applying the dead load of Singularity’s own weight in 2g

conditions. Finite element analysis performed on this

Figure 4.1 One of four drivetrain
pods attached to Singularity’s

frame.

Figure 4.2 ANSYS structural analysis results for the
base of the drivetrain pod, showing a maximum

tensile stress of 21530 psi.

7

component using conservative estimates, as illustrated in Figure 4.2, showed the part met at worst 62% of yield,

confirming the safety and reliability of the design. Additionally, after the first pod was constructed, it was impact

tested to determine whether it would withstand the force of the entire robot dropped from a height of 6“.

4.2 Chassis

Singularity’s chassis was designed to emphasize the robot’s

omnidirectional capabilities, be structurally robust, and

provide easy access to electrical and mechanical components.

The chassis measures 36” long by 32” wide, which allows the

robot to navigate between obstacles without altering its

orientation and fit through standard doorways. The robot is

39” tall when the camera mount is collapsed, allowing the

robot to fit inside a minivan without disassembly. The camera

mount adds an additional 16” of height to provide a large

range of visibility for lane detection.

The frame needed to be strong enough to withstand complex

loading from the omnidirectional drivetrain, provide the

stability necessary to reduce vibrations felt of the sensors and cameras, and be as lightweight as possible. Initially,

the chassis was designed with a hybrid of high-strength steel and lightweight aluminum to reduce the overall

weight of the robot without sacrificing structural integrity. However, the tight corners and complex geometry of

the frame posed major challenges for the welded aluminum portion of the structure. For example, it was

determined that the aluminum battery compartment design would not be able to withstand the force of 100-lbs of

batteries being loaded and unloaded. In order to meet the desired structural integrity requirements, the majority

of the frame was redesigned with steel square-tube. This had the additional benefit of allowing the frame to be

welded using the Metal Inert Gas (MIG) process, which is faster than the Tungsten Inert Gas (TIG) process used to

weld aluminum.

In order for the embedded and software teams to have enough time to test before competition, Singularity’s

chassis was streamlined. The simplified geometry reduced the pressure on the welders and allowed for a rapid

turnover of the robot to the team members in charge of configuring the electrical components. Additionally, the

current chassis uses less material than the old design, leading to a cleaner look and leaving space for future

modifications and improvements.

4.3 Serviceability

Singularity was designed to provide easy access to its internal components for maintenance and upgrades. The

batteries and two of the laser range finders are attached to a pull-out tray. This allowed the size of the battery

compartment to be reduced compared to its predecessor while speeding up the process of replacing the batteries.

Similarly, all of Singularity’s circuit boards are attached to easily-accessible panels mounted underneath

Figure 4.4 Singularity’s original hybrid
aluminum-steel frame design.

8

Singularity’s outer shell. The catadioptric assembly on the top of the robot can be removed and stored in the

payload area, which allows Singularity to fit in the back of a mini-van for long-distance transportation.

4.4 Sensor Placement

Singularity implements an omnidirectional optical system for lane detection. A single camera is mounted facing

directly upwards and pointed at the tip of a 6” diameter convex axicon (cone-shaped) mirror with an angle of

depression of 18°. The shape, size, and position of the mirror were chosen to increase the proportion of pixels

that map to the surrounding several feet of the robot as compared to a spherical or parabolic mirror. The cone

shape also allowed the mirror to be easily and inexpensively manufactured: the cone was machined out of

aluminum to match the specifications required to achieve the desired field of view, then coated with a sheet of

metallic DuraLar for reflectivity. Since the camera mount is centered on the top of the robot, the view of the

ground immediately surrounding the robot is obscured. However, since lines are visible on all sides of the robot,

lines that pass through the obscured area can be interpolated from lines detected in the surrounding areas.

In addition to the omnidirectional vision, there is an LRF mounted on each side of Singularity. These serve to

detect obstacles through 180° ranges, which were placed to minimize blind spots. Also, due to interference, it was

necessary to position the LRFs in a way such that all the scans they would make are vertically offset from each

other by 20 cm. The compass, accelerometer, and GPS are located as close to the center of the robot as possible to

ensure accurate measurements, and the compass is also placed away from the motors and steel frame to reduce

distortion of the magnetic field.

5 Electronics Design

Singularity’s electrical system is designed to provide a simple, robust interface between the high-level software

system, sensors, and effectors in order to deliver efficiency, functionality, and safety. In addition to handling all

of the low-level sensor interfacing, the electrical system provides power to all system components.

Remote

System Controller

Camera Accelerometer

Computer

GPS

Router

EncodersCompass

E-Stop

Motor Control

LRFs

Motors

Figure 5.1 Embedded system diagram. Red-outlined components indicated the embedded
system.

9

5.1 Embedded Control System

At the center of the embedded control system is a TS-7800 ARM-based single-board computer (SBC). This runs a

customized Gentoo Linux distribution. This system provides the simple interface between the main computer

and the rest of the electrical system. It communicates with the main computer via Gigabit Ethernet connection,

enabling simple, reliable high-speed data transfer.

5.2 Main Computer

Singularity uses a custom-built micro-ATX computer as its main computational platform. It provides substantially

more processing power than an equivalently priced laptop and is tightly integrated with the rest of the robot,

which reduces the risk of damage to the computer and peripherals during operation in tough environments. The

computer is outfitted with a 2.5GHz Intel Core 2 Quad Processor, 4GB DDR2 RAM, and 4GB of solid-state

permanent storage. A 23W passively cooled nVidia Quadro graphics card is also installed for parallel data

processing (GPGPU). This allows Singularity to quickly analyze sensor data and react to changes in its

environment.

5.3 Sensors

Singularity uses an AVT Guppy F-080C digital camera for lane detection. This camera provides 1024x768 pixel,

color images at 30 FPS via a Firewire 400 connection. It receives power via this connection as well. Singularity

also has four SICK PLS101 laser range finders, providing a complete 360 degree plane of view around the robot.

Other sensors include an Ocean Server Technology OS4000-T digital compass with built-in accelerometer, a

Garmin GPS 18X-5Hz GPS receiver with one meter accuracy, a second accelerometer to provide accurate

rotational data, and quadrature and absolute drive pod encoders.

5.4 Motion Control

Singularity’s drive system implements a brand new method of motion control. Four team-designed motor

controllers drive eight motors (four steering, four drive) on Singularity completely independently. Each motor

controller commands a single drive pod, and receives feedback from quadrature encoders, absolute encoders, and

potentiometers mounted on the drive pods. This control scheme allows Singularity to accurately drive on uneven

terrain. The motors can be given commands to simulate several common driving modes, such as Ackermann

steering, differential drive, and synchro drive.

5.5 Remote Control

Singularity uses a Linksys WRT320N wireless router to enable remote connectivity between the internal systems

and the outside world. Using this router, Singularity can communicate with any device capable of connecting to

an 802.11g (Wi-Fi) network. The wireless system is used to provide shell access to the main and embedded

systems. Additionally, this allows the robot to be controlled remotely via the team’s custom-designed, JAUS-

based user interface.

10

 A team-designed, hand-held Operator Control Unit (OCU) allows for manual control of the robot. The OCU

communicates with the robot using a pair of 900MHz ZigBee modules, which offer excellent reliability and

performance. The system supports automatic channel hopping, power modulation, and 128-bit AES encryption of

the wireless transmissions. Also, the modules have a maximum line-of-sight range of up to six miles, which is far

greater than any reasonable usage of the robot.

5.6 Electrical Safety Features

The wireless emergency stop system is integrated directly into Singularity’s OCU. The system uses a side channel

from the ZigBee link to completely bypass the embedded software system when sending emergency stop

commands. This dedicated data line is more reliable than sending an emergency stop packet from the remote, as

all software on both sides of the ZigBee link is bypassed. The emergency stop is also triggered when the ZigBee

link is broken. The emergency stop cuts power to the drive motor circuitry, bringing Singularity to a halt in less

than one foot of travel.

Singularity also includes a warning light and an optional 110dB air horn to provide visual and auditory warnings

during operation. The embedded team decided to expand upon the basic safety features required in the LED

warning system: besides switching to a flashing pattern while in autonomous mode, the LED lights around

Singularity will also repeat a cascading pattern to indicate the direction the robot is traveling All of the electrical

systems on Singularity are protected by fuses in order to prevent the failure of one component from affecting

other components. In addition, the power converters incorporate over- and under-voltage protection, as well as

short-circuit and electrostatic discharge protection, making the power system robust under a wide variety of

difficult conditions.

5.7 Power System

Table 5.1 Power System Requirements

 Normal Maximum

Device Volts Amps Watts Amps Watts
TS-7800 Single Board Computer 5 0.4 2 0.8 4
Warning Lights 3.3 0.6 1.98 1.2 3.96
Misc Electronics 5 0.5 2.5 1 5
Linksys WRT54G Router 12 0.4 4.8 0.4 4.8
Garmin GPS 18x-5Hz 5 0.05 0.25 0.1 0.5
Guppy F-080 Firewire Camera 12 0.2 2.4 0.2 2.4
Main Processor DC-DC supply 24 3 72 4.5 108
Sick PLS101 LRF (4) 24 0.8 19.2 1 24
Turning Motors (4) 24 2.75 66 24 576
Scooter Motors (4) 24 20 480 85 2040

Total Watts 651.13 2768.66

Singularity’s power system is designed to maximize vehicle run time and make software development and testing

as easy as possible. Power is derived from two 12V deep-cycle lead acid marine batteries that form a 24V nominal

battery pack with 75AH capacity. This battery system provides power for up to three hours of operation under

normal conditions and up to ten hours in standby mode. The long battery life and integrated charging port allow

11

Singularity to run nearly continuously. In addition, depleted batteries can be replaced in minutes to maximize run

time in the field.

Power conversion using team-built DC-DC converters provides 24V, 12V, 5V, and 3.3V power to the various

systems on the robot at 85-95% efficiency. A separate LRF power supply allows all four LRFs to be powered from

a single circuit board. Efficiency is approximately 93% when each LRF draws 1A. One distinctive feature added to

this power supply is a combination of both a hardware push button reset and a software reset, which allows the

LRF’s to be power cycled manually or from software in the unfortunate event of a failure while in autonomous

mode.

6 Software Design

Singularity’s software system is an evolved version of the Robotics Simulation and Control Lab (RSCL). RSCL is a

JAVA framework originally developed by the team in 2005. It was designed with the principles of simplicity,

modularity, and robustness in mind. The team sought to continue this tradition because the design aspects

closely aligned with the goals of our team: providing a training platform for inexperienced members that also

meets IGVC performance requirements. The RSCL platform is easily accessible to undergraduates because it was

originally designed by fellow undergraduates, and because it is written in JAVA, UW-Madison’s primary

instructional programming language. Finally, RSCL was chosen because it has proven to be a versatile and robust

platform at past IGVC competitions.

A marked deviation in our objectives from last year is an emphasis on a more reactionary approach compared to

last year’s heavy mapping and path planning approach. This was done to reduce software complexity and

increase robustness. Through careful deliberation, and through experience from last year’s attempts, it was

determined that the additional complexity brought on by a simultaneous localization and mapping (SLAM)

system was not adequately justified by the requirements of the competition. It was deemed that all objectives

could be completed with the less complex system.

6.1 Structure

Singularity’s software architecture is comprised of 3 distinct layers: the sensor/effector daemon layer, the

observable layer, and the observer layer. The sensor/effector daemon layer is comprised of servers which

interface directly with the sensors/effectors and transmit received data or commands to or from a software client

via TCP/IP sockets. Implementing the sensor interfaces in this way increases modularity and the scalability of

the system for future projects. This year we incorporated an open source software package called daemontools

which monitors all of our daemons and immediately restarts them in the event that they encounter a catastrophic

failure. This has greatly improved the robustness of our robot, increasing testing hours and providing insurance

should something fail in the middle of a live run.

Our second layer, the observable layer, consists of asynchronous clients that run as part of RSCL, each running in

its own thread. They connect to the aforementioned servers and provide data asynchronously to upper-level

layers using an event-based subscriber model. We chose this implementation to provide greater modularity by

12

freeing higher layers from the burden of implementing and being tied to specific server connections. The

asynchronous event model ensures that higher layers always have access to the most recent data, ensuring the

highest possible temporal accuracy of our models. These clients are implemented using a singleton programming

paradigm to reduce the presence of redundant network traffic travelling to higher layers.

The third layer, the observer layer, consists of high-level data modules such as maps, goals, path planners, pose

estimators, and operating modes. The high level of abstraction in these modules allows them to be easily ported

to different robots with minimal modification.

6.2 Obstacle & Lane Detection

The main sensors used for obstacle and lane detection are the four laser range finders (LRFs) and camera. Raw

data received from the LRFs and camera are synthesized into a set of objects (obstacles and lanes) and are

overlaid onto a local object map. This object map is then processed into a set of drivable regions surrounding the

robot. This approach remains robust in the face of faulty data because it throws out all map data after a single

iteration of the process. Only a small set of hints are maintained in order to inform the next iteration of likely

object locations.

Our camera is used primarily for Lane Detection, though it also serves as our primary flag and pothole detection

sensor. In developing the vision system it was necessary to balance the field of view the camera provides with the

need to maintain sufficient image resolution for our vision algorithms to run effectively. It was determined

through a set of calculations and experimental results that a maximum field of view ranging from 9 to 20 feet in a

single direction would produce the best results. Given the maximum speed of the robot and speed of our

algorithms and sensors, it was determined that a maximum sensor range of nine feet would be sufficient to

properly navigate the robot through any potential situation. The LRF ranges are limited to 12 feet from a

maximum range of 150 feet for this same reason.

6.2.1 Vision Processing

Singularity uses a catadioptric vision system with a cone-

shaped mirror configuration in order to provide a 360-

degree camera field of view. A cone mirror was selected

because it provides all-encompassing visibility, which

allows Singularity to maneuver in its environment without

exiting the lanes. Additionally, they create an opportunity to

perform omnidirectional stereo vision, which the team is

considering implementing in the future. First, images taken

from the camera off of the cone mirror are processed to

detect points indicating lanes. Then, these points are un-

warped using an algorithm that maps points in the image-

space onto the ground-plane. Experimental results showed

Figure 6.2 Intensity values from a row of the input
image.

Figure 6.2 The same row after the edge filter has
been applied. The green arrow indicates the

detected line segment.

13

that running the algorithms in this order provided the best performance in terms of both efficiency and lane

detection accuracy.

The lane detection algorithm first applies a noise-invariant, high-contrast filter to the input image, detecting

paired high contrast edges. This filter works by calculating the difference between the averages of either side of

each pixel. Then, corresponding adjacent high and low relative extrema, beyond a specific threshold, are selected

as segments, rows of pixels bounded by high contrast edges. Segments are clustered into groups based on

proximity; then, a shape analysis algorithm selects the groups that most closely approximate lines. Finally, curves

are fitted to the selected groups of segments. These curves are then un-warped to ground-space coordinates

using the unwarping scheme mentioned above and transmitted to the next layer.

This customized lane detection algorithm provides several benefits over more conventional lane detection

algorithms. All filters applied to the images are separable, which reduces the runtime complexity of the

processing from O(n2) to O(n). In practice, our image processing algorithm can process a 1024x768 image in less

than 30ms. This speed allows for more precise and temporally accurate data for implementing path planning

algorithms. It is also tailored to deal with the high degree of noise detected in images of grass. Finally, the

algorithm runs using image intensity values, as opposed to specific color channels. This makes the algorithm

generalizable to a wide variety of applications such as object detection.

Once the detected curves reach the higher layer, they are further filtered based on their direction, size, position,

and jaggedness. Additionally, they are compared with predictive transforms of the previous scan’s curves in

order to rule out false positives.

6.3 Autonomous Navigation

Singularity implements a hierarchical subsumption

architecture for mapping and path planning. First a long

term goal is calculated using the robot’s previous path,

lane direction, and waypoints. This long term goal, in

conjunction with an obstacle map of nearest obstacles, is

then used to find the direction closest to the long term

goal that avoids obstacles. Finally, a set of commands is

determined using inverse kinematics to get us as close to

our midterm goal as possible.

The lane manager determines Singularity’s long term

goal by projecting out the center and direction of the

detected lane. This is done in a robust manner by

weighting how much vision-detected lines contribute to

the calculation of the lane geometry based on how much

they correlate with the robot’s previous path (a good

Desired Heading

Line Data
Points

Best Gap

Heading
Command

Lane Direction Previous Path

LRF Data Points

Current Speed
Current
Heading

Distance,
Direction Close

Objects

Long Range Goal

Mid Range Goal

Waypoints

Immediate Goal

Figure 6.4 Path planning diagram

14

indicator of the actual lane). The long term goal alleviates the problem of following dashed lines because the goal

is extrapolated from previous lanes and partial lane geometry. This is a marked improvement over previous

years’ algorithms which extrapolated lines as obstacles, creating problematic situations in the case of false

positives.

The midterm goal is determined in accordance with input from the lane manager, replacing the lane manager’s

goal if it is not directly achievable. This is accomplished by gathering the closest objects in each direction into an

array. This array is processed into a set of drivable gaps. The final midterm goal is chosen as the angle within the

drivable gaps that is sufficiently distant from obstacles and most in the direction of the long term goal. Driving

toward this midterm goal achieves obstacle avoidance (making complex obstacles such as center islands trivial to

surpass) while still leading us in the direction of the chosen goal. One additional measure is taken: placing an

obstacle on the map at the robot’s previous position. This has the effect of propelling the robot forward in the

case of switchbacks. If no valid gaps are detected, this obstacle is removed, and the midterm goal is recalculated,

allowing the robot to escape dead ends and traps.

The short term goal provides a motor command that moves the robot as close to the midterm goal as possible. A

table is generated mapping motor commands to predicted positions. The considered motor commands are within

a certain nucleus of the current motor command, simultaneously limiting the robot’s acceleration and the size of

the calculated table. A fixed time interval, several times larger than the robot’s reaction rate is used for position

prediction. Thus the robots path is defined as the single motor command executed over the fixed time interval.

This provides the robot with a steady, consistent path to the midterm goal, yet still allows the robot to quickly

modify its path should its midterm goal change.

This path has several enticing properties. The implicit acceleration limit and preference for constant velocity

reduces strain on the mechanical platform by avoiding rapid changes in speed. This path naturally reduces any

tendency to turn in place, reducing both wear on the driving system and excessive power consumption. Finally,

the consistent path coupled with a high reaction rate makes this algorithm ideal when the robot is operating at

high speeds. Furthermore speeds are naturally throttled in the presence of close obstacles.

6.4 Navigation Strategy

The modularity of the software system makes the implementation of the navigation challenge code simple. The

long term goal determined by the lane manager is simply replaced with the specific destination GPS waypoint. A

simple greedy algorithm determines the waypoint traversal order. Though a Differential GPS system was outside

the scope of the team’s budget, an extended Kalman filter is used, combining GPS, encoder, and IMU data to

provide us with accurate localization up to 10 cm.

This year the team developed a global obstacle map implemented using a range tree data structure. Obstacles are

placed onto the robot’s local map on every path planning cycle by making a query to the range tree. These

obstacles are placed to tailor the robot’s path and set up restricted driving areas. This will be used to force the

robot to look at certain positions for a break in the fence separating the Valley and the Mesa.

15

6.5 Simulation

In order to facilitate testing of the software without using the physical robot, a simulation component was

designed. It is composed of two parts, SimulateC (SimC) and SimulateD (SimD), as well as a GUI for each to

simplify their usage. Modularity allows the simulator to be transparently inserted between the second and third

layers of the system. SimC records raw data from the sensors on the robot, and SimD plays this data back into the

software algorithms. This allows the team to test new algorithms more quickly and efficiently, checking their

responses to previously encountered situations.

6.6 JAUS Integration

A single, light-weight framework was developed as the base of our JAUS compliance code. Our framework acts as

a central kernel for our client-side and server-side JAUS implementation. This framework provides all message

encoding, decoding, sending, and receiving functionality. All seven core services of the JAUS specification have

been implemented, and six of the mobility services have been implemented as well. Building off of this

framework, we have fully integrated our robot to be JAUS compliant, developed a graphical user interface that

controls the robot entirely through JAUS messages, and developed a similar Android application that is capable of

controlling the robot.

7 Performance

Singularity’s rugged construction and powerful motors

allow it to navigate over a variety of terrains at up to

10mph and climb steep slopes, while the

omnidirectional drivetrain provides efficient

maneuverability. The omnidirectional camera and LRFs

detect obstacles several meters away which the powerful on-board computer can quickly react to using robust

localization and mapping algorithms. Two large deep cycle lead-acid batteries provide ample run time for testing

and should last all day under intermittent use.

8 Cost Summary

Ideally, the team would design and manufacture all components on the robot for the experience it would provide.

However, several components are too expensive to make in small quantities, require access to specialized

equipment, or are simply beyond the level of undergraduate work. These components, such as motherboards,

motors, the GPS, and others, were purchased, saving both time and money. The team designed and manufactured

a vast majority of the components on Singularity including the frame, power supplies, operator control unit, and

motor controllers. Most of the software is written entirely by team members. In many cases, code originates

from various open source projects and is updated or improved upon.

Performance Parameter Prediction Result

Top Speed 10mph -

Ramp Climbing 30° -

Reaction Time 200ms 85ms

Battery Life 3 hours -

Obstacle Detection Distance 14 feet 12 feet

GPS Waypoint Accuracy 1.0m 1.0m

Table 7.1 Performance characteristics

16

Table 8.1 Estimated parts cost for Singularity

System Item Qty Cost Our Cost

Mechanical Structural Components - $783 $783

 Drive Components (Sprockets, Chain, etc.) - $252 $252

 Bearings - $238 $238

 Hardware - $111 $111

 Non-Structural Components (PVC, Shaft Collars, etc.) - $91 $91

 Motors 8 $703 $703

Computer Main Board - Foxconn G33M-S Micro-ATX 1 $95 $0

 Processor - Intel Q9300 Quad Core 1 $280 $0

 Graphics Card - Quadro NVS 290 1 $120 $0

 Solid State Memory - 4GB 1 $65 $0

 Memory - 4GB DDR2 800 1 $61 $0

Vehicle Control TS-7800 Single Board Computer 1 $270 $270

 Interface Board – Team Designed 1 $150 $150

 Motor Controllers – Team Designed 4 $600 $300

 Wireless Router – Linksys WRT320N 1 $60 $60

 Operator Control Unit – Team Designed 1 $300 $0

 Warning Lights – Team Designed 1 $80 $80

 Wire and Interface Hardware - $120 $120

Sensors SICK PLS101 Laser Range Finder 4 $12,000 $300

 Garmin GPS 18x-5Hz 1 $160 $160

 OS4000-T Compass 1 $250 $250

 Accelerometer 1 $80 $0

 Drive Encoders 4 $200 $0

 Turn Encoders and Potentiometers 4 $100 $100

Power Main Power Supply 1 $90 $90

 LRF Supply 1 $80 $80

 ATX Power Supply – M4-ATX 250W 1 $100 $0

 Batteries – 75Ah 12V Deep Cycle Lead-Acid 2 $120 $0

Total $17,559 $4,138

9 Conclusion

Singularity was designed with military and commercial applications in mind, and with the hope of advancing the

field of unmanned ground vehicles. It was designed to meet and exceed the challenges presented by the 2011

Intelligent Ground Vehicle Competition, and to highlight the strengths of the IEEE Robot Team. Singularity’s

modularity, versatility and efficiency should prove to be an ideal platform for autonomous vehicle research and

development.

	1 Introduction
	2 Innovations
	2.1 Mechanical Innovations
	2.2 Electrical Innovations
	2.3 Software Innovations

	3 Design Process
	3.1 Team Structure
	1.1
	1.1
	3.2 Project Planning
	3.3 Development

	4 Mechanical Design
	4.1 Drivetrain
	4.2 Chassis
	4.3 Serviceability
	4.4 Sensor Placement

	5 Electronics Design
	5.1 Embedded Control System
	5.2 Main Computer
	5.3 Sensors
	5.4 Motion Control
	5.5 Remote Control
	5.6 Electrical Safety Features
	5.7 Power System

	6 Software Design
	6.1 Structure
	6.2 Obstacle & Lane Detection
	6.2.1 Vision Processing

	6.3 Autonomous Navigation
	6.4 Navigation Strategy
	6.5 Simulation
	6.6 JAUS Integration

	7 Performance
	8 Cost Summary
	9 Conclusion

